- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000200001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kim, Min Jun (3)
-
Leshansky, Alexander M (3)
-
Cheang, U K (2)
-
Duygu, Yasin C (2)
-
Kararsiz, G (2)
-
Liu, A (2)
-
Cheang, U Kei (1)
-
Duygu, Yasin Cagatay (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Duygu, Yasin C; Kararsiz, G; Liu, A; Cheang, U K; Leshansky, Alexander M; Kim, Min Jun (, Korea Robotics Society)Planar magnetic microswimmers are well-suited for in vivo biomedical applications due to their cost-effective mass production through standard photolithography techniques. The precise control of their motion in diverse environments is a critical aspect of their application. This study demonstrates the control of these swimmers individually and as a swarm, exploring navigation through channels and showcasing their functional capabilities for future biomedical settings. We also introduce the capability of microswimmers for surface motion, complementing their traditional fluid-based propulsion and extending their functionality. Our research reveals that microswimmers with varying magnetization directions exhibit unique trajectory patterns, enabling complex swarm tasks. This study further delves into the behavior of these microswimmers in intricate environments, assessing their adaptability and potential for advanced applications. The findings suggest that these microswimmers could be pivotal in areas such as targeted drug delivery and precision medical procedures, marking significant progress in the biomedical and micro-robotic fields and offering new insights into their control and behavior in diverse environments.more » « less
-
Duygu, Yasin Cagatay; Cheang, U Kei; Leshansky, Alexander M; Kim, Min Jun (, Advanced Intelligent Systems)Planar magnetic microswimmers bear great potential for in vivo biomedical applications as they can be mass‐produced at minimal costs using standard photolithography techniques. Therefore, it is central to understand how to control their motion. This study examines the propulsion of planar V‐shaped microswimmers in an aqueous solution powered by a conically rotating magnetic field and compares the experimental results with theory. Propulsion is investigated upon altering the cone angle of the driving field. It is shown that a V‐shaped microswimmer magnetized along its symmetry axis exhibits unidirectional in‐sync propulsion with a constant (frequency‐independent) velocity in a limited band of actuation frequencies. It is also demonstrated that the motion of individual and multiple in‐plane magnetized planar microswimmers in a conically rotating field can be efficiently controlled.more » « less
An official website of the United States government

Full Text Available